A new competency ontology for learning environments personalization

Author:

Paquette GilbertORCID,Marino Olga,Bejaoui Rim

Abstract

AbstractCompetency is a central concept for human resource management, training and education. We define a competency as the capacity of a person to display a generic skill with a certain level of performance when applied to one or more knowledge entities. Competencies, and competency referentials grouping competencies, are essential elements for user models, e-Portfolios, adaptive learning, and personalization in Technology-based learning. But to be processed both by humans and by software tools, competencies should be represented in a formal, non-ambiguous model called an ontology. Moreover, this model should use a shared vocabulary to describe the generic skills and the knowledge entities. Defining and linking shared vocabularies is the purpose of ontologies in the semantic web. The goal of our research is to develop a competency ontology for the semantic web to be used as a shared referential in the description of competencies and competency profiles. We analysed five previous competency models and developed COMP2, a new competency ontology that integrates important elements of previous models and the richness of the semantic web vocabulary. COMP2 provides processing capabilities both to humans and computers. Its graphic model is highly readable by humans for design, evaluation and communication purposes. It also translates, together with its data sets, to standard semantic Web code for machine processing. The ontology is composed of five stages that are interlinked with other ontologies in use within the web of linked open data. We will present an example for the use of the ontology for competency-based personalization in learning environments.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Education

Reference64 articles.

1. Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist—Effective modeling in RDFS and OWL (2nd ed.). Morgan-Kaufmann/Elsevier.

2. Allen, C., Bloom, N., Bork, D., Kiel, P., Scott, D., Edwards, J. D., Cohn, D., Bartkus, K., Mickley, R., Kortright, E. & Weiss, J. (2001). HR-XML competencies 1.0 (measurable characteristics) recommendation. Retrieved March 14, 2017 from http://xml.coverpages.org/HR-XML-Competencies-1_0.pdf.

3. ASN-DL. (2012). Achievement standards network core RDF. Retrieved March 14, 2017 from http://standards.asn.desire2learn.com/index.php?title=ASN_Vocabulary.

4. Author (ref 1). Modélisation des connaissances et des compétences: un langage graphique pour concevoir et apprendre.

5. Author (ref 2). Instructional engineering for network-based learning.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3