Relationship between seepage water volume and total suspended solids of landslide dam failure caused by seepage: an experimental investigation

Author:

Dhungana Prakash,Wang Fawu

Abstract

Abstract Background Landslide dams inevitably demonstrate the potential for catastrophic failure with high-risk damage to life and property at the downstream site. Hence, knowledge of the internal stability of dam materials is a key to predicting the seepage failure of landslide dams. In this study, experiments were conducted to examine the relationship between seepage volume and total suspended solids (TSS) of seepage water based on hydro mechanical constrains. Understanding the relationship between the seepage volume and TSS with hydro-mechanical constraints supports the prediction of the seepage failure of landslide dams at the field level. Result Experiments were conducted with a mixed sample of silica sands. Seepage water was collected from a flume tank with the facility to measure the hydraulic gradient, vertical displacement, and seepage water volume. Grain size affected the life span of the dam. The seepage volume increased with the increase in the percentage of silica sand S4, whereas TSS increased with the increase in the percentage of silica sand S8. With the increase in the dam height, the dam life decreases for low coeficient of uniformity of the grain size distribution. With the increase in the reservoir size, TSS decreased, and the total seepage volume increased. Conclusion Dam failure depends on the particle size, dam geometry, inflow rates, reservoir size, hydraulic gradient, and seepage water volume, and TSS of seepage water. The results indicated that with the increase in fine particles, the life span decreases, and TSS increases. With the increase in the flow rate, the dam life span decreases, and the TSS and seepage volume rate increase.The dam height leads to an increase seepage volume with low TSS, where the life span of the dam also depends on the particle size distribution With the increase in the reservoir size, the seepage water volume decreases with low TSS.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference44 articles.

1. Ahlinhan MF, Koube MB, Adjovi CE (2016) Assessment of the internal instability for granular soils subjected to seepage. J Geosci Environ Protect 4:46–55

2. Awal R, Nakagawa H, Baba Y, Sharma RH (2007) Numerical and experimental study on landslide dam failure by sliding. Annual J Hydraul Eng JSCE 51:7–12

3. Awal R, Nakagawa H, Fujita M, Kawaike K, Baba Y, Zhang H (2011) Study on the piping failure of a natural dam. Ann Dis Prev Res Institute Kyoto Univ 54:539–547

4. Brauns J (1985) Stability of layered granular soil under horizontal groundwater flow. In: Proceedings of the 15th international congress on large dams, Lausanne 1985

5. Budhu M, Gobin R (1996) Slope instability from ground-water seepage. J Hydraul Eng 122(7):415–417

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3