Dust emission source characterization for visibility hazard assessment on Lordsburg Playa in Southwestern New Mexico, USA

Author:

Van Pelt R. ScottORCID,Tatarko John,Gill Thomas E.,Chang Chunping,Li Junran,Eibedingil Iyasu G.,Mendez Marcos

Abstract

AbstractIn drylands around the world, ephemeral lakes (playas) are common. Dry, wind-erodible playa sediments are potent local and regional sources of dust and PM10 (airborne particles with diameters less than 10 μm). Dust clouds often cause sudden and/or prolonged loss of visibility to travelers on downwind roadways. Lordsburg Playa, in southwestern New Mexico, USA is bisected by Interstate Highway 10. Dust storms emanating from the playa have been responsible for numerous visibility-related road closures (including 39 road closures between 2012 and 2019) causing major economic losses, in addition to well over a hundred dust-related vehicle crashes causing at least 41 lost lives in the last 53 years. In order to improve understanding of the surfaces responsible for the dust emissions, we investigated the critical wind friction velocity thresholds and the dust emissivities of surfaces representing areas typical of Lordsburg Playa’s stream deltas, shorelines, and ephemerally flooded lakebed using a Portable In-Situ Wind ERosion Laboratory (PI-SWERL). Mean threshold friction velocities for PM10 entrainment ranged from less than 0.30 m s− 1 for areas in the delta and shoreline to greater than 0.55 m s− 1 for ephemerally flooded areas of the lakebed. Similarly, we quantified mean PM10 vertical flux rates ranging from less than 500 μg m− 2 s− 1 for ephemerally flooded areas of lakebed to nearly 25,000 μg m− 2 s− 1 for disturbed delta surfaces. The unlimited PM10 supply of the relatively coarse sediments along the western shoreline is problematic and indicates that this may be the source area for longer-term visibility reducing dust events and should be a focus area for dust mitigation efforts.

Funder

National Aeronautics and Space Administration

U.S. Department of Transportation

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference48 articles.

1. ADOT (Arizona Department of Transportation) (2019) U.S. 70, Safford to New Mexico State Line Interstate Detour Needs Study. Report Prepared for the Arizona Department of Transportation, Contract # 17–171965, Task # MPD 00018–19, December, 2019. 69 pp.

2. Allen BD (2005) Ice age lakes in New Mexico. In: Lucas SG, Morgan GS, Zeigler KE (eds) , p 8

3. Ashley WS, Strader S, Dziubla CC, Haberlie A (2015) Driving blind: weather-related vision hazards and fatal motor vehicle crashes. Bull Am Meteorol Soc 96:755–778

4. Associated Press (2017) 2 killed in freeway crash in NM dust storm. http://www.lcsun-news.com/story/news/local/2017/02/24/2-killed-freeway-crash-nm-dust-storm/98369206/. Published on February 24, 2017.

5. Baddock MC, Gill TE, Bullard JE, Dominguez-Acosta M, Rivera-Rivera N (2011a) Geomorphology of the Chihuahuan Desert based on potential dust emissions. J Maps 7:249–259

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3