Author:
Prakash A. Jaya,Begam Sazeda,Vilímek Vít,Mudi Sujoy,Das Pulakesh
Abstract
Abstract
Background
Operational large-scale flood monitoring using publicly available satellite data is possible with the advent of Sentinel-1 microwave data, which enables near-real-time (at 6-day intervals) flood mapping day and night, even in cloudy monsoon seasons. Automated flood inundation area identification in near-real-time involves advanced geospatial data processing platforms, such as Google Earth Engine and robust methodology (Otsu’s algorithm).
Objectives
The current study employs Sentinel-1 microwave data for flood extent mapping using machine learning (ML) algorithms in Assam State, India. We generated a flood hazard and soil erosion susceptibility map by combining multi-source data on weather conditions and soil and terrain characteristics. Random Forest (RF), Classification and Regression Tool (CART), and Support Vector Machine (SVM) ML algorithms were applied to generate the flood hazard map. Furthermore, we employed the multicriteria evaluation (MCE) analytical hierarchical process (AHP) for soil erosion susceptibility mapping.
Summary
The highest prediction accuracy was observed for the RF model (overall accuracy [OA] > 82%), followed by the SVM (OA > 82%) and CART (OA > 81%). Over 26% of the study area indicated high flood hazard-prone areas, and approximately 60% showed high and severe potential for soil erosion due to flooding. The automated flood mapping platform is an essential resource for emergency responders and decision-makers, as it helps to guide relief activities by identifying suitable regions and appropriate logistic route planning and improving the accuracy and timeliness of
emergency response efforts. Periodic flood inundation maps will help in long-term planning and policymaking, flood management, soil and biodiversity conservation, land degradation, planning sustainable agriculture interventions, crop insurance, and climate resilience studies.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献