Abstract
AbstractAlthough the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been devoted to the topic in this context in terms of research, risk reduction practice, and urban policy. Based on the collection of landslides data of the Andean city of Quito, Ecuador, this article aims to explore the predictive power of a binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was included to measure the classification power of the models. Charts of the three SA methods helped to visualize the sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in this research. Among the ten factors included in the model to help explain landslide susceptibility in the context of Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting power for landslide susceptibility in urban areas when adopting data standardization based on weights assigned by experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that calibrations of the best-performance reference model would improve its AUC by up to 0.53%. Further experimentation regarding other methods of data pre-processing and a finer level of disaggregation of input data are suggested. In terms of policy design, the LOGIT model coefficient values suggest the need for a deep analysis of the impacts of urban features, such as population, road density, building footprint, and floor area, at a household scale, on the generation of landslide susceptibility in Andean cities such as Quito. This would help improve the zoning for landslide risk reduction, considering the safety, social and economic impacts that this practice may produce.
Funder
ARES (Belgium) and Universidad Central del Ecuador
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development
Reference63 articles.
1. Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol 65(1):49–65. https://doi.org/10.3989/egeol.08642.036
2. Blanchard-Boehm RD (2004) Natural hazards in Latin America: tectonic forces and storm fury. Soc Stud 95(3):93–105. https://doi.org/10.3200/TSSS.95.3.93-105
3. Bouyer J (2009) Modélisation et simulation des microclimats urbains: Étude de l’impact de l’aménagement urbain sur les consommations énergétiques des bâtiments. Thèse, Université de Nantes. https://tel.archives-ouvertes.fr/tel-00426508. Accessed 25 Dec 2019
4. Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT (2020) Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena 188:104426. https://doi.org/10.1016/j.catena.2019.104426
5. Catani F, Lagomarsino D, Segoni S, Tofani V (2013a) Exploring model sensitivity issues across different scales in landslide susceptibility. Nat Hazards Earth Syst Sci Discuss 1(2):583–623. https://nhess.copernicus.org/preprints/1/583/2013/nhessd-1-583-2013.pdf
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献