Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis applied to Quito, Ecuador

Author:

Puente-Sotomayor FernandoORCID,Mustafa AhmedORCID,Teller JacquesORCID

Abstract

AbstractAlthough the Andean region is one of the most landslide-susceptible areas in the world, limited attention has been devoted to the topic in this context in terms of research, risk reduction practice, and urban policy. Based on the collection of landslides data of the Andean city of Quito, Ecuador, this article aims to explore the predictive power of a binary logistic regression model (LOGIT) to test secondary data and an official multicriteria evaluation model for landslide susceptibility in this urban area. Cell size resampling scenarios were explored as a parameter, as the inclusion of new “urban” factors. Furthermore, two types of sensitivity analysis (SA), univariate and Monte Carlo methods, were applied to improve the calibration of the LOGIT model. A Kolmogorov–Smirnov (K-S) test was included to measure the classification power of the models. Charts of the three SA methods helped to visualize the sensitivity of factors in the models. The Area Under the Curve (AUC) was a common metric for validation in this research. Among the ten factors included in the model to help explain landslide susceptibility in the context of Quito, results showed that population and street/road density, as novel “urban factors”, have relevant predicting power for landslide susceptibility in urban areas when adopting data standardization based on weights assigned by experts. The LOGIT was validated with an AUC of 0.79. Sensitivity analyses suggested that calibrations of the best-performance reference model would improve its AUC by up to 0.53%. Further experimentation regarding other methods of data pre-processing and a finer level of disaggregation of input data are suggested. In terms of policy design, the LOGIT model coefficient values suggest the need for a deep analysis of the impacts of urban features, such as population, road density, building footprint, and floor area, at a household scale, on the generation of landslide susceptibility in Andean cities such as Quito. This would help improve the zoning for landslide risk reduction, considering the safety, social and economic impacts that this practice may produce.

Funder

ARES (Belgium) and Universidad Central del Ecuador

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference63 articles.

1. Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud Geol 65(1):49–65. https://doi.org/10.3989/egeol.08642.036

2. Blanchard-Boehm RD (2004) Natural hazards in Latin America: tectonic forces and storm fury. Soc Stud 95(3):93–105. https://doi.org/10.3200/TSSS.95.3.93-105

3. Bouyer J (2009) Modélisation et simulation des microclimats urbains: Étude de l’impact de l’aménagement urbain sur les consommations énergétiques des bâtiments. Thèse, Université de Nantes. https://tel.archives-ouvertes.fr/tel-00426508. Accessed 25 Dec 2019

4. Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT (2020) Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena 188:104426. https://doi.org/10.1016/j.catena.2019.104426

5. Catani F, Lagomarsino D, Segoni S, Tofani V (2013a) Exploring model sensitivity issues across different scales in landslide susceptibility. Nat Hazards Earth Syst Sci Discuss 1(2):583–623. https://nhess.copernicus.org/preprints/1/583/2013/nhessd-1-583-2013.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3