Slope stability analysis of a landfill subjected to leachate recirculation and aeration considering bio-hydro coupled processes

Author:

Feng Shi-Jin,Wu Shao-Jie,Fu Wen-Ding,Zheng Qi-TengORCID,Zhang Xiao-Lei

Abstract

AbstractDuring the operation of landfills, leachate recirculation and aeration are widely applied to accelerate the waste stabilization process. However, these strategies may induce high pore pressures in waste, thereby affecting the stability of the landfill slope. Therefore, a three-dimensional numerical analysis for landfill slope stability during leachate recirculation and aeration is performed in this study using strength reduction method. The bio-hydro coupled processes of waste are simulated by a previously reported landfill coupled model programmed on the open-source platform OpenFOAM and then incorporated into the slope stability analysis. The results show that both increasing the injection pressure for leachate recirculation and maximum anaerobic biodegradation rate will reduce the factor of safety (FS) of the landfill slope maximally by 0.32 and 0.62, respectively, due to increased pore pressures. The ignorance of both waste biodegradation and gas flow will overestimate the slope stability of an anaerobic bioreactor landfill by about 20–50%, especially when the landfilled waste is easily degradable. The FS value of an aerobic bioreactor landfill slope will show a significant reduction (maximally by 53% in this study) when the aeration pressure exceeds a critical value and this value is termed as the safe aeration pressure. This study then proposes a relationship between the safe aeration pressure and the location of the air injection screen (i.e., the horizontal distance between the top of the injection screen and the slope surface) to avoid landfill slope failure during aeration. The findings of this study can provide insights for engineers to have a better understanding of the slope stability of a bioreactor landfill and to design and control the leachate recirculation and aeration systems in landfills.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference38 articles.

1. Beaven R, White J, Braithwaite P (2008) Application of the University of Southampton Landfill Degradation and Transport Model (LDAT) to an aerobic treatment field experiment. Global Waste Management symposium, Colorado

2. Byun B, Kim I, Kim G, Eun J, Lee J (2019) Stability of bioreactor landfills with leachate injection configuration and landfill material condition. Comput Geotech 108:234–243

3. Cao BY, Feng SJ, Li AZ (2018) CFD modeling of anaerobic-aerobic hybrid bioreactor landfills. Int J Geomech 18:04018072.1–04018072.10

4. Clausen J, Damkilde L, Andersen L (2007) An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space. Comput Struct 85:1795–1807

5. Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Géotechnique 49:835–840

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3