Study on the correlation between real-time GNSS landslide acceleration monitoring and earthquake response: a case of May 2, 2023, MW = 5.2 Baoshan earthquake, Yunnan

Author:

Tao Zhigang,Li Mengnan,Sui QiruORCID,Mao Yuting,He Manchao,Jiang Yuebin

Abstract

Abstract Background Earthquakes and landslides pose significant threats to human safety and property, necessitating early warning systems. However, the high construction costs of earthquake early warning systems present a challenge. Purpose Landslide warnings are more prevalent, so linking them to earthquake warnings could address cost concerns. Hence, it is crucial to validate the feasibility of utilizing GNSS landslide monitoring as assistance for earthquake early warning systems. Methods This paper analyzes acceleration anomaly data from 31 GNSS landslide monitoring points near the epicenter of the May 2, 2023, MW = 5.2 Baoshan earthquake in Yunnan. The response time was determined as the time difference between an earthquake's occurrence and GNSS's acceleration anomalies. This calculation helps measure the time delay and sensitivity between these two events. Data were obtained from the geological disaster monitoring and early warning management system. Results GNSS landslide monitoring showed high sensitivity to nearby earthquakes. The fastest response time among the 31 data points was 8 seconds, while the slowest was 56 seconds, all falling within the one-minute mark. A linear correlation was found between acceleration anomaly response time and distance from the epicenter, indicating the feasibility of GNSS landslide monitoring-assisted earthquake monitoring. Conclusion A proposal is made for a GNSS landslide monitoring cluster to establish a multi-dimensional landslideearthquake disaster warning system. This approach offers new methods for combining earthquake and landslide early warning systems, leveraging existing infrastructure for cost-effectiveness and enhancing disaster preparedness.

Funder

State Key Laboratory for GeoMechanics and Deep Underground Engineering

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3