Author:
Karunarathna Sandaruwan,Goto Satoshi,Bandaranayake Sajith,Bandara Priyantha
Abstract
Abstract
Background
Ground failures in a slope due to gravity, are commonly known as landslides. Depend on the compositional, geological, and structural characteristics of the unstable initiation zone and the erosional composition of the propagation zone decide the complete particle size distribution of the moving mass and its gradation. This information is most important for the study of downslope movement. Only laboratory sieve analysis cannot fulfil this target because the natural debris contains a wide range of particle sizes, especially boulders. The combined method of scaled image analysis and laboratory sieve analysis or the combined method of line-grid analysis and laboratory sieve analysis was proposed to fulfil the requirement. To study the proposed combined methods, five different locations within the downslope propagation zone from the Aranayake landslide in Sri Lanka were surveyed and analyzed. In image analysis, the high-resolution scaled image of deposited debris was analyzed by computer-based image analysis for particle sizes. Small particles were addressed by the laboratory sieve analysis using the representative debris sample taken from the same location. If the boulder sizes within the debris are too big to address this method, then the Line-grid method was performed. The particles in every 0.5 m along a measured line of debris deposition were measured in this method. If the selected location contains small particles that cannot measured manually, the representative sample was used for the laboratory sieve analysis to fulfil this range.
Results
The results of three locations indicated a 40% distribution of < 10 mm and a 60% distribution of > 10 mm representing the general distribution of the debris. Two distributions deviated from the general distribution that was surveyed and analyzed from special locations of the “near boundary of flow path” and “slope change zone” of the landslide.
Conclusions
The combined methodology yielded successful results of complete particle size distribution for the wide range of particle sizes in debris. The variation of the particle size distribution curves of debris along the downslope depositions is planned to be used for the study of downslope propagation, damage zone assessment studies, and predicting the representative composition of future failures.
Publisher
Springer Science and Business Media LLC