Sustainable rural infrastructure: guidelines for roadside slope excavation

Author:

Paudyal Prabhat,Dahal Pranish,Bhandari Prakash,Dahal Bhim Kumar

Abstract

AbstractThe construction of non-engineered, equipment-based rural roads in Nepal Himalaya is one of the predominant causes of landslides. The construction frequency of such roads has significantly increased over the past decade. However, the present guidelines governing slope excavation for these roads are not based on geotechnical characterizations of sites. The current study uses the limit equilibrium method with the Mohr–Coulomb constitutive model to determine safe cut heights and slopes for varying geometric and material parameters. GeoStudio Slope/W was used to model soil slopes with various gradients, and cuts with varying depths and slope angles were modeled to calculate the factor of safety (FoS) against shear failure for different geometric and material conditions. The results of the study were visualized in design charts with FoS as the dependent variable. The analysis highlights the importance of different parameters, i.e., excavation depth, excavation slope, and existing ground slope in the FoS, in addition to the slope-forming material. Furthermore, a field study was carried out to validate the model using the clustering approach. The results from the field are similar to those from the numerical model, although some additional site-specific parameters like vegetation cover and surface runoff conditions should be considered before selecting the cut slope. Finally, this study proposes that future road construction guidelines should consider terrain parameters, hydrology, and geotechnical site conditions to promote sustainable road infrastructure and reduce future disaster risks in the Himalayan region.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3