Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim

Author:

Anbalagan Rathinam,Kumar Rohan,Lakshmanan Kalamegam,Parida Sujata,Neethu Sasidharan

Abstract

Abstract Background Sikkim Himalaya is under consistent distress due to landslides. Abrupt thrust on infrastructure development in the valley regions of Sikkim Himalaya has led to a need for a prior planning to face landslide hazard. A comprehensive study for the identification of landslide hazard zones using landslide frequency ratio and fuzzy logic in GIS environment has been presented for the Lachung valley, Sikkim, India, where a number of hydroelectric projects are proposed. Temporal remote sensing data was used to generate significant landslide causative factors in addition to landslide inventory. Primary topographic attributes namely slope, aspect and relative relief were derived from digital elevation model. Landslide frequency ratio approach was adopted to correlate landslide causal factors with landslide incidences. Further, fuzzy logic method was used for the integration of landslide causative factors in order to delineate the landslide hazard zones. Fuzzy memberships were derived from the landslide frequency ratio values. Different gamma values were used in fuzzy gamma integration process, which resulted different landslide hazard index maps. Receiver operating characteristic curves were prepared to analyze consistency of the resulting landslide hazard index maps. Results Landslide frequency ratio values have emphasised the importance of factors/classes in landsliding. High slope angle (35°-45°), very high slope category (>45°), High and very high relative relief categories; south, southeast and southwest aspects; drainage and lineaments buffer range of 0-50m, 50-100m and 100 to 150m; quartzite/garnet schist and migmatite type of lithology; Sandy loam and Rock/loam classes of soils; fallow land and sparse vegetation classes of land use/land cover were found to be associated with landsliding. Five landslide hazard zonation maps with each comprising five relative landslide hazard zones namely; very low, low, moderate, high and very high hazard zones were prepared by using five fuzzy gamma operators. Maps indicated that steep talus slopes, close proximity to drainages, ridges and spars fall under high hazard zones. Settlement areas were observed in low to moderate hazard zones. Very high hazard zones were observed in steep slopes, cliffs and cut slopes excavated for the roads. Low hazard zones were observed in agricultural terraces and permafrost areas. Conclusions Hence it can be concluded that landslide causative factor’s integration using fuzzy logic has yielded good results for Lachung valley. Frequency ratio method for determination of fuzzy membership value has reduced subjectivity in the model. The final LHZ map (γ = 0.92) can be used for the planning of future infrastructure, settlement and ecological development in Lachung region.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference64 articles.

1. Acharya SK, Shastry MVA (1979) Stratigraphy of eastern himalaya: geological survey of india miscellaneous publication. ᅟ 41:49–67

2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

3. Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277

4. Anbalagan R, Chakraborty D, Kohli A (2008) Landslide hazard zonation (LHZ) mapping on meso-scale for systematic town planning in mountainous terrain. J Sci Indus Rese 67:486–497

5. Arora MK, Das Gupta AS, Gupta RP (2004) An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Rem Sens 25:559–572

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3