GIS-based modeling of snowmelt-induced landslide susceptibility of sensitive marine clays

Author:

Al-Umar Mohammad,Fall Mamadou,Daneshfar Bahram

Abstract

AbstractIn this study, a simulation tool, based on the combination of Geographic Information System (GIS) and Grid-Based Regional Slope-Stability Model (TRIGRS), is developed to assess and predict the snowmelt-induced landslides in areas of sensitive marine clays in the Ottawa region (Canada). Topographic, geologic, hydrologic, and geotechnical information of the study area, in addition to snowmelt intensity data for different periods, was required to conduct this modeling study. Snowmelt intensity records for periods of 6–48 h, 3–15 days, 25 days, and 30 days, as well as the information on historical landslides in the study area, were used to examine both the timing and location of shallow landslides due to snowmelt across the Ottawa region. The developed tool is validated by comparing the predicted landslide-susceptible areas with the historical landslide maps in the study area. A good agreement between the predicted and recorded historical landslides was obtained, which suggests that the developed GIS-TRIGRS based tool can predict relatively well the snowmelt-induced landslide susceptibility in the sensitive marine clays. The modeling results show that high slope areas of sensitive marine clays are more prone to snowmelt-induced landslides. As a result, this simulation tool could be used to assess and/or predict snowmelt-induced landslides in different areas of the Ottawa region, which is an important means for decision-making processes with respect to protecting the population and infrastructure against snow-melt induced marine clay landslides.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Geotechnical Engineering and Engineering Geology,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Geography, Planning and Development

Reference57 articles.

1. Auld H, MacIver D, Klassen J, Cheng S, Comer N, Fernandez S (2009) Adaptation by design: climate, municipal infrastructure & buildings in the Ottawa area. Environment Canada, Ottawa, Report, p. 38.

2. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata prefecture, Japan. Landslides 1(1):73–81

3. Aylsworth, D.E., Lawrence and Evans, S.G., 1997. Landslide and settlement problems in sensitive marine clay, Ottawa Valley. Guidebook, Geological Survey Canada, 63.

4. Aylsworth DE, Lawrence, Evans SG (1977) Landslide and settlement problems in sensitive marine clay, Ottawa Valley. Geological Survey Canada, Ottawa

5. Baum L, Savage WZ, Godt JW (2008) TRIGRS-a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, version 2.0. In: US Geological Survey Open-File Report 2008–1159 available at: http://pubs.usgs.gov/of/2008/1159

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3