Author:
Vahdati Hassani Faezeh,Naseri Vahideh,Razavi Bibi Marjan,Mehri Soghra,Abnous Khalil,Hosseinzadeh Hossein
Abstract
Abstract
Background
Antidepressants have been shown to affect levels of brain-derived neurotrophic factor (BDNF) and VGF (non-acronymic) whose transcriptions are dependent on cAMP response element binding protein (CREB) in long term treatment. The aim of this study was to verify the subacute antidepressant effects of crocin, an active constituent of saffron (Crocus sativus L.), and its effects on CREB, BDNF, and VGF proteins, transcript levels and amount of active, phosphorylated CREB (P-CREB) protein in rat hippocampus.
Methods
Crocin (12.5, 25, and 50 mg/kg), imipramine (10 mg/kg; positive control) and saline (1 mL/kg; neutral control) were administered intraperitoneally (IP) to male Wistar rats for 21 days. The antidepressant effects were studied using the forced swimming test (FST) on day 21 after injection. Protein expression and transcript levels of genes in the rat hippocampus were evaluated using western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR), respectively.
Results
Crocin significantly reduced the immobility time in the FST. Western blot analysis showed that 25 and 50 mg/kg of crocin increased the levels of CREB and BDNF significantly and dose dependently. All doses of crocin increased the VGF levels in a dose-dependent manner. Levels of p-CREB increased significantly by 50 mg/kg dose of crocin. Only 12.5 mg/kg crocin could significantly increase the transcript levels of BDNF. No changes in CREB and VGF transcript levels were observed in all groups.
Conclusions
These results suggest that crocin has antidepressant-like action by increasing CREB, BDNF and VGF levels in hippocampus.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献