Author:
Jamali Bardia,Ardakani Yalda Hosseinzadeh,Rouini Mohammad-Reza,Foroumadi Alireza,Amidi Salimeh,Aghdam Vahid Hossein Zadeh,Kobarfard Farzad
Abstract
Abstract
Background
Ecstasy is one of the popular illicit drugs in the world and its usage has been recently increased in Iran. This compound can destroy the serotonergic neurons and produces cognitive and psychopathology diseases. 3,4-dihydroxymethamphetamine (HHMA) which is the main metabolite of this compound, seems to be responsible for this effect. However, no consensus has been reached among the researchers about its role. This disagreement between the researches may be due to failure in determination of HHMA as free form in physiological fluids. In this study, the stability of this crucial metabolite of ecstasy was examined in different mediums.
Methods
The stability of HHMA was studied in the perfusion medium and water at 100 and 10 ng/mL concentrations. Moreover, the effect of temperature (0–25°C), pH (3–10), calcium chloride (0–150 g/L) and ethylenediaminetetraacetic acid (EDTA) on the stability of HHMA was also examined.
Results
Our result suggested that the free form of HHMA could be degraded in the perfusion medium. The rate of this degradation has direct proportion to temperature (at 25°C = 0.037 min-1 and at 0°C = 0.002 min-1). Calcium chloride and sodium bicarbonate are two responsible components in this instability. Moreover, the alkaline pHs and increasing the shaking time can accelerate this effect. Although, while degradation was prevented at pH=3, EDTA could only reduce this rate about 30%.
Conclusions
Calcium cation can act as an accelerator of HHMA degradation. Therefore, the perfusion medium should not contain Ca2+ and the pH of medium is better to be adjusted at acidic range. Since, the internal cellular source of calcium is endoplasmic reticulum system, it can be assumed that, this cation may change HHMA and dopamine to reactive compounds that can bind covalently to the cysteinyl group of biological compounds and damage cellular components.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献