Synthesis, in vitro aerobic and hypoxic cytotoxicity and radiosensitizing activity of novel metronidazole tethered 5-fluorouracil

Author:

Abdi Khosrou,Khalaj Ali,Ostad Seyed Nasser,Lamei Navid,Khoshayand Mohammad Reza

Abstract

Abstract Background and the purpose of the study Several 2, 4-dinitrophenyl and 2,4-dinitrophenylamine tethered 5-FU (5-fluorouracil) compared to their components have shown minimal or no cytotoxicity to HT-29 cell line under aerobic conditions but high cytotoxicity and radiosensitizing effects under hypoxic conditions. In the present study the cytotoxicity and radiation potentiation of three novel analogues of these compounds by replacing 2,4-dinitrophenyl moiety with 2-methyl-5-nitroimidazole, a known radiosensitizer and cytotoxic agent was investigated. Methods Tethered compounds 79 were prepared by the reaction of 1-(t-butoxycarbonyl)-5-fluorouracil 6 with metronidazole esters 24 followed by removal of the t-butoxycarbonyl protecting group. Cytotoxicity of compounds in HT-29 cells with or without radiation were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), propidium iodide (PI)-digitonin and clonogenic assays. Results Tethered compounds 79 induced time-and concentration–dependent cytotoxicity under hypoxia but had no significant effect under aerobic conditions. These compounds also showed selective and concentration- dependent radiosensitization effects under hypoxic conditions. Conclusion Tethered compounds 79 compared to 5-FU 5 showed minimal cytotoxicities under aerobic and selective radiosensitizing activities under hypoxic conditions. Also effects of these compounds were higher than those of metronidazole 1 which is a known cytotoxin and radiosensitizer under hypoxic conditions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3