Determining the effective number and surfaces of teeth for forensic dental identification through the 3D point cloud data analysis

Author:

Kurniawan ArofiORCID,Yodokawa Kouya,Kosaka Moe,Ito Koichi,Sasaki Keiichi,Aoki Takafumi,Suzuki Toshihiko

Abstract

Abstract Background The assimilation between three-dimensional (3D) imaging techniques and dental forensic science can provide rich and stable information for human identification. This study aimed to determine the effective number and surfaces of teeth for dental identification through the 3D imaging approach. Material and methods In the present study, maxillary dental casts were fabricated from subjects who met the inclusion criteria and scanned using a 3D scanner Vivid 910. Rapidform XOS/SCAN software was used to create and trim the 3D point cloud data. Subsequently, two types of 3D surface data of dental casts were registered and the root mean square errors (RMSEs) between subjects were calculated using iterative closest point (ICP) algorithm in MATLAB. Two sets of experiments with 120 combinations of the superimposed 3D dataset were designed, termed as experiments 1 and 2. Results In experiment 1, the difference between subjects was clearly distinguished with a minimum of six teeth of the dental arch. The results of experiment 2 suggest that the labial surfaces of the anterior teeth are sufficient to be used for dental identification. Conclusion Through these experiments for all possible pairs of subjects, a clear difference was observed in the RMSE between the genuine and imposter pairs. These results indicate the potential of using the 3D imaging technique to achieve highly accurate human identification. It is suggested that a future study with a larger sample number will evaluate the robustness and accuracy of this method.

Publisher

Springer Science and Business Media LLC

Subject

Law,Health (social science),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3