Abstract
Abstract
Background
The determination of the shooting distance using gunshot residue (GSR) analysis is crucial in the investigation and reconstruction of firearm-related crimes. However, the conventional chemographic method for GSR analysis is destructive and has limited sensitivity and selectivity. While the spectroscopic method has potential in GSR analysis for crime investigation, there is a current lack of consistency in the spectroscopic results obtained for shooting distance estimation via GSR analysis. Addressing such limitations will enhance the forensic capabilities of law enforcement and provide an added advantage to crime laboratories during an investigation. It will also reinforce the use of such spectroscopic data in a criminal investigation.
Main text
We obtained all peer-reviewed articles relevant to shooting distance estimation from searching Scopus, Web of Science, PubMed, and Google Scholar databases. We specifically searched the databases using the keywords “shooting distance,” “range of fire,” “gunshot residue,” “firearm discharge residue,” and “firearm-related crime” and obtained 3811 records. We further filtered these records using a combination of two basic keywords “gunshot residue” and “shooting distance estimations” yielding 108 papers. Following a careful evaluation of the titles, abstracts, and full texts, 40 original peer-reviewed articles on shooting distance estimation via GSR analysis were included in the study. The forgoing included additional sources (n = 5) we obtained from looking through the reference lists of the forensic articles we found.
Short conclusion
This paper discusses the current scope of research concerning the chemographic and spectroscopic analysis of GSR for shooting distance estimation. It also examines the challenges of these techniques and provides recommendations for future research.
Publisher
Springer Science and Business Media LLC
Subject
Law,Health(social science),Pathology and Forensic Medicine
Reference50 articles.
1. Ananth V, Kalthom U, Me S (2014) Detection of organic gunshot residues for the estimation of firing distance
2. Andreola S, Gentile G, Battistini A, Cattaneo C, Zoja R (2011) Forensic applications of sodium rhodizonate and hydrochloric acid: a new histological technique for detection of gunshot residues. J Forensic Sci 56(3):771–774. https://doi.org/10.1111/j.1556-4029.2010.01689.x
3. Atwater CS, Durina ME, Durina JP, Blackledge RD (2006) Visualization of gunshot residue patterns on dark clothing. J Forensic Sci 51(5):1091–1095. https://doi.org/10.1111/j.1556-4029.2006.00226.x
4. Bailey JA, Casanova RS, Bufkin K (2004) A comparison between the modified griess test and use of sodium hypochlorite for enhancement of gun shot residue patterns on fabric 1. Am Acad Forensic Sci:38–40
5. Barth M, Niewo L, Latzel S, Neimke D (2012) Shooting distance determination by m-XRF — examples on spectra interpretation and range estimation. Forensic Sci Int 223:273–278. https://doi.org/10.1016/j.forsciint.2012.10.001
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献