Preparation, morphology and thermoelectric performance of PEDOT/CuI nanocomposites

Author:

Alam Joherul,Su Xiao,Kuan Hsu-Chiang,Afshar Vahid Shahraam,Zuber Kamil,Meng Qingshi,Meng Fanzhe,Losic Dusan,Ma Jun

Abstract

AbstractIncorporating inorganic nanomaterials into a polymer matrix is one of the most effective ways to create thermoelectric performance for applications where physical flexibility is essential. In this study, flexible thermoelectric nanocomposite films were synthesized by incorporating inorganic copper iodide (CuI) nanosheets as the filler into poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). The process involved the preparation of bulk CuI from precursors and, subsequently, the nanosheet synthesis by dissolving the bulk CuI in dimethyl sulfoxide (DMSO). The morphology of the nanosheets and the nanocomposite films was thoroughly examined, and the film’s thermoelectric performance was evaluated using a standard thermoelectric measurement system, ZEM-3. The morphological observation revealed a triangular nanosheet geometry for CuI, with an average lateral dimension of ~33 nm. The PEDOT/CuI nanocomposite films were prepared by mixing CuI nanosheets with PEDOT: PSS through ultrasonication and filtration on a PVDF membrane. The film with 6.9 vol% of CuI nanosheets exhibited an electrical conductivity and Seebeck coefficient of 852.07 S·cm-1 and 14.95 µV·K-1, respectively. This resulted in an enhanced power factor of 19.04 µW·m-1·K-2, much higher than the individual composite components. It demonstrated a trend of increasing power factor with the nanosheets up to 6.9 vol% due to improved electrical conductivity. The increase in electrical conductivity can be attributed to the screening effect induced by DMSO, which leads to a conformational change in the PEDOT chains. Furthermore, an optimal fraction of CuI nanosheets also contributes to this conformational change, further enhancing the electrical conductivity. Graphical Abstract

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3