3D printing of high performance polymer-bonded PEEK-NdFeB magnetic composite materials

Author:

Pigliaru L.,Rinaldi M.,Ciccacci L.,Norman A.,Rohr T.,Ghidini T.,Nanni F.

Abstract

AbstractPermanent Rare Earth magnets are becoming more and more important in efficient motors and generators with high energy density. Among them NdFeB magnets are the most employed, with NdFeB having higher remanence, high coercivity and energy product. Nevertheless,their poor corrosion resistance makes them susceptible to degradation of the magnetic properties. One possible solution is the development of innovative polymeric composite magnetic materials. The preparation of NdFeB powders filled polymeric matrix (PEEK), with a double goal of protecting the magnetic alloy is proposed, thus preventing it from corrosion, and to realize a new material that can be shaped in the form of filaments. This material was used as feedstock in the 3D printing process to produce high performance magnets with customized and optimized design. The PEEK-NdFeB filaments were produced with three percentages of filler amount(i.e. 25, 50 and 75 wt%). PEEK neat filaments were produced as reference. The influence of the filler on the main thermomechanical properties of the resulting composites, as well as its effect onthe 3D printing process were evaluated by means of different investigation techniques (DSC, DMTA, XRD, tensile testing). The magnetic properties exhibited by Fused Filament Fabrication (FFF) printed parts confirmed the feasibility of employing such a combination of an innovative manufacturing technique and high-performance PEEK-NdFeB compounds.The characterization carried out on both neat and composite filaments evidenced that the presence of the filler slightly decreased the thermal stability, increased the elastic modulus while decreasing ductility and maximum tensile strength. By means of DSC analysis, it was confirmed that the crystallinity is influenced by the presence of the filler. Magnetic measurement performed on the 3D printed parts demonstrate that interesting magnetic properties were achieved, confirming the feasibility of the magnetic 3D printed composite with PEEK.

Publisher

Springer Science and Business Media LLC

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3