Superhydrophobic micro-nanofibers from PHBV-SiO2 biopolymer composites produced by electrospinning

Author:

Rabbani SaadORCID,Jafari Reza,Momen Gelareh

Abstract

AbstractElectrospinning is a relatively simple technique for producing continuous fibers of various sizes and morphologies. In this study, an intrinsically hydrophilic poly(3-hydroxybutarate-co-3-hydroxyvalerate) (PHBV) biopolymer strain was electrospun from a solution under optimal processing conditions to produce bilayers of beadless micro-fibers and beaded nano-fibers. The fibrous mats produced from the pure PHBV solution exhibited hydrophilicity with complete wetting. Incorporation of polydimethylsiloxane (PDMS) treated silica into the electrospinning solutions resulted in a non-wetting state with increased fiber roughness and enhanced porosity; however, the fiber mats displayed high water droplet-adhesion. The SiO2–incorporated fibrous mats were then treated with stearic acid at an activation temperature of 80 °C. This treatment caused fiber surface plasticization, creating a tertiary hierarchical roughness owing to the interaction of PHBV chains with the polar carboxyl groups of the stearic acid. Scanning electron microscopy was used to assess the influence of the electrospinning process parameters and the incorporation of nanoparticles on surface morphology of the fibers; energy dispersive X-ray spectroscopy confirmed the presence of SiO2 nanoparticles. Fourier transform infrared spectroscopy was performed to study the incorporation of SiO2 and the interaction of stearic acid with PHBV at various concentrations. The chemical interaction between stearic acid and PHBV was confirmed, while SiO2 nanoparticles were successfully incorporated into the PHBV fibers at concentrations up to 4.5% by weight. The incorporation of nanoparticles and plasticization altered the thermal properties of PHBV and a decrease in crystalline fraction was observed. The stearic acid modified bilayers produced from the micro-nano-fibrous composites showed very low water droplet sticking, a roll off angle of approximately 4° and a high static contact angle of approximately 155° were achieved. Graphical Abstract

Funder

Natural Sciences and Engineering Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3