Molecular sieving through 'layer-by-layer' self-assembly of polyelectrolytes and highly crosslinked graphene oxide

Author:

Maiti Subhasish,Bose Suryasarathi

Abstract

AbstractLack of access to potable water and abating levels of ground water level demands the reuse of unconventional water sources after remediating it in a sustainable way. In this context, purifying brackish, land and sea water seems a feasible solution to the ever-growing population.In this work, a novel composite membrane was fabricated by 'layer-by-layer' self-assembly of poly-dopamine (PDA) and polystyrene sulfonate (PSS) supported on a highly crosslinked graphene oxide (GO) membrane to sieve ions to purify contaminated water as well as enhance the resistance towards chlorine. This GO membrane was sandwiched between layers of various nanoporous polyvinylidene difluoride (PVDF) membranes obtained by selectively etching out the PMMA component from the demixed blends. The blend membranes were designed following the melt-extrusion process and subsequent quenching to facilitate confined crystallization of PVDF and selective etching of PMMA. The membranes with different pore sizes were tuned on varying the composition in blends and a gradient in microstructure was achieved by stitching the membranes. Pure water flux, salt rejection, dye removal, and antibacterial activity were performed to study the membrane's efficiency. The GO membrane was chemically crosslinked with methylenediamine to impart dimensional stability and to enhance rejection efficiency through the nanoslits that GO offers. Besides effective rejection, the sandwiched membrane was modified with ‘layer-by-layer’ self-assembly of polyelectrolytes on the surface to improve the chlorine tolerance performance. This strategy resulted in an excellent salt (about 95% and 97% for monovalent and divalent ion, respectively) and dye rejection (100% for both cationic and anionic dye), besides facilitating excellent chlorine tolerance performance. Moreover, this modified membrane showed superior antifouling properties (flux recovery ratio is more than 90%) and excellent antibacterial performance (near about 3 log reduction).Thus the concept of using layer-by-layer self-assembly of polycations (PDA) and polyanions (PSS) onto a hierarchical chemically modified GO sandwiched PVDF membrane proved to be a productive strategy to purify contaminated water. Thus the membrane can be a potential candidate for domestic as well as industrial application.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3