Thermoplastic elastomer composite strips with damage detection capabilities for self-healing elastomers

Author:

Georgopoulou Antonia,Korhonen Henry,Bosman Anton W.,Clemens Frank

Abstract

AbstractSelf-healing materials can increase the lifetime of products and improve their sustainability. However, the detection of damage in an early stage is essential to avoid damage progression and ensure a successful self-healing process. In this study, self-healing sensor composite strips were developed with the embedding of a thermoplastic styrene-based co-polymer (TPS) sensor in a self-healing matrix. Piezoresistive TPS sensor fibers composites (SFCs) and 3D printed sensor element composites (SECs) were fabricated and embedded in a self-healing matrix by lamination process to detect damage. In both cases, the value of the initial resistance was used to detect the presence of damage and monitor the efficiency of healing. A higher elongation at fracture could be achieved with the extruded sensor fibers. However, for the composite strips the SECs could achieve a higher elongation at fracture. Mechano-electrical analysis revealed that the strips maintained a monotonic, reproducible response after the healing of the matrix. The SFCs had significantly lower drift of the sensor signal during cyclic mechanical analysis. Nevertheless, on a tendon-based soft robotic actuator, the SECs obtained a drift below 1%. This was explained by the lower deformation (e.g.) strain in comparison to the tensile test experiments.

Funder

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3