Experimental and density functional theory studies on some metal oxides and the derived nanoclusters: a comparative effects on human ferritin

Author:

Al-Garawi Zahraa S.,Ismail Ahmad H.,Hillo Duaa H.,Öztürkkan Füreya Elif,Necefoğlu Hacali,Mohamed Gehad G.,Abdallah Abanoub Mosaad

Abstract

AbstractA comprehensive investigation into the green synthesis of metal oxide nanoparticles (NPs) has garnered significant attention due to its commendable reliability, sustainability, and environmentally friendly attributes. Green synthesis methods play a crucial role in mitigating the adverse effects associated with conventional approaches employed for nanostructure preparation. This research endeavors to examine the impact of ginger plant extract-assisted green synthesis of metal oxides NPs on the serum ferritin levels of anemic diabetic patients in vitro, focusing specifically on α-Fe2O3 and ZnO NPs. Sixty diabetic volunteers with anemia (35–50 years) and thirty healthy volunteers were enrolled as controls. The assessment was conducted using the VIDAS Ferritin (FER) assay. Photoluminescence (PL) spectroscopy measurements were performed to elucidate the intrinsic and extrinsic transitions of these NPs, affirming the successful formation of α-structured iron oxide. Density functional theory (DFT) calculations were carried out at the B3LYP/6-311++G(d,2p) level of theory to investigate the geometry optimization and molecular electrostatic potential maps of the NPs. Furthermore, TD-DFT calculations were employed to explore their frontier molecular orbitals and various quantum chemical parameters. The binding affinity and interaction types of ZnO and α-Fe2O3 NPs to the active site of the human H-Chain Ferritin (PDB ID: 2FHA) target were determined with the help of molecular docking. Results unveiled the crystalline structure of ZnO and the α-structure of α-Fe2O3. Analysis of the frontier molecular orbitals and dipole moment values demonstrated that ZnO (total dipole moment (D) = 5.80 µ) exhibited superior chemical reactivity, biological activity, and stronger molecular interactions with diverse force fields compared to α-Fe2O3 (D = 2.65 µ). Molecular docking of the metal oxides NPs with human H-chain ferritin provided evidence of robust hydrogen bond interactions and metal-acceptor bonds between the metal oxides and the target protein. This finding could have a great impact on using metal oxides NPs-ferritin as a therapeutic protein, however, further studies on their toxicity are required. Graphical abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3