Abstract
AbstractNew selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (FexOy/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5–100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12–48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC50) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC50 values of FexOy/N-GN were calculated as 21.95 to 2.11 µg.mL−1, IC50 values of N-GN were calculated as 39.64 to 26.47 µg.mL−1 and IC50 values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, FexOy/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of FexOy/N-GN as a new selective therapeutic.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献