Author:
Zhang Shuting,Weng Yihui,Ma Chunhua
Abstract
AbstractElastomeric nanostructures are normally expected to fulfill an explicit mechanical role and therefore their mechanical properties are pivotal to affect material performance. Their versatile applications demand a thorough understanding of the mechanical properties. In particular, the time dependent mechanical response of low-density polyolefin (LDPE) has not been fully elucidated. Here, utilizing state-of-the-art PeakForce quantitative nanomechanical mapping jointly with force volume and fast force volume, the elastic moduli of LDPE samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 up to 2 k Hz. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young’s modulus was discovered with increasing acquisition frequency. It was measured 11.7 ± 5.2 MPa at 0.1 Hz and increased to 89.6 ± 17.3 MPa at 2 kHz. Moreover, creep compliance experiment showed that instantaneous elastic modulus E1, delayed elastic modulus E2, viscosity η, retardation time τ were 22.3 ± 3.5 MPa, 43.3 ± 4.8 MPa, 38.7 ± 5.6 MPa s and 0.89 ± 0.22 s, respectively. The multiparametric, multifunctional local probing of mechanical measurement along with exceptional high spatial resolution imaging open new opportunities for quantitative nanomechanical mapping of soft polymers, and can potentially be extended to biological systems.
Funder
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献