Egg Albumin-Assisted Hydrothermal Synthesis of Co3O4 Quasi-Cubes as Superior Electrode Material for Supercapacitors with Excellent Performances

Author:

Sun Jiale,Wang Ya,Zhang Yanfei,Xu Chunju,Chen HuiyuORCID

Abstract

Abstract Novel Co3O4 quasi-cubes with layered structure were obtained via two-step synthetic procedures. The precursors were initially prepared via hydrothermal reaction in the presence of egg albumin, and then the precursors were directly annealed at 300 °C in air to be converted into pure Co3O4 powders. It was found that the size and morphology of final Co3O4 products were greatly influenced by the amount of egg albumin and hydrothermal durations, respectively. Such layered Co3O4 cubes possessed a mesoporous nature with a mean pore size of 5.58 nm and total specific surface area of 80.3 m2/g. A three-electrode system and 2 M of KOH aqueous electrolyte were employed to evaluate the electrochemical properties of these Co3O4 cubes. The results indicated that a specific capacitance of 754 F g−1 at 1 A g−1 was achieved. In addition, the Co3O4 cubes-modified electrode exhibited an excellent rate performance of 77% at 10 A g−1 and superior cycling durability with 86.7% capacitance retention during 4000 repeated charge-discharge process at 5 A g−1. Such high electrochemical performances suggest that these mesoporous Co3O4 quasi-cubes can serve as an important electrode material for the next-generation advanced supercapacitors in the future.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3