Sub-bandgap near-infrared photovoltaic response in Au/Al2O3/n-Si metal–insulator–semiconductor structure by plasmon-enhanced internal photoemission

Author:

Dai Xiyuan,Wu Li,Yu Liang,Yu Zhiyuan,Ma Fengyang,Zhang Yuchen,Yang Yanru,Sun Jian,Lu Ming

Abstract

AbstractSilicon sub-bandgap near-infrared (NIR) (λ > 1100 nm) photovoltaic (PV) response by plasmon-enhanced internal photoemission was investigated. The Si sub-bandgap NIR PV response, which remains unexploited in Schottky junction-like solar cell device, was examined using nanometer sized Au/Al2O3/n-Si junction arrays. This kind of metal–insulator–semiconductor structure was similar in functionality to Schottky junction in NIR absorption, photo-induced charge separation and collection. It showed that NIR absorption increased steadily with increasing volume of Au nanoparticles (NPs) till a saturation was reached. Simulation results indicated the formation of localized surface plasmon on the surfaces of Au NPs, which was correlated well with the observed NIR absorption. On the other hand, the NIR PV response was found sensitive to the amount and size of Au NPs and thickness of Al2O3. Chemical and field-effect passivation of n-Si by using Al2O3 and SiO2 were used to optimize the NIR PV response. In the current configuration, the best PV conversion efficiency was 0.034% at λ = 1319 nm under illumination power of 0.1 W/cm2.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3