Author:
Dai Xiyuan,Wu Li,Yu Liang,Yu Zhiyuan,Ma Fengyang,Zhang Yuchen,Yang Yanru,Sun Jian,Lu Ming
Abstract
AbstractSilicon sub-bandgap near-infrared (NIR) (λ > 1100 nm) photovoltaic (PV) response by plasmon-enhanced internal photoemission was investigated. The Si sub-bandgap NIR PV response, which remains unexploited in Schottky junction-like solar cell device, was examined using nanometer sized Au/Al2O3/n-Si junction arrays. This kind of metal–insulator–semiconductor structure was similar in functionality to Schottky junction in NIR absorption, photo-induced charge separation and collection. It showed that NIR absorption increased steadily with increasing volume of Au nanoparticles (NPs) till a saturation was reached. Simulation results indicated the formation of localized surface plasmon on the surfaces of Au NPs, which was correlated well with the observed NIR absorption. On the other hand, the NIR PV response was found sensitive to the amount and size of Au NPs and thickness of Al2O3. Chemical and field-effect passivation of n-Si by using Al2O3 and SiO2 were used to optimize the NIR PV response. In the current configuration, the best PV conversion efficiency was 0.034% at λ = 1319 nm under illumination power of 0.1 W/cm2.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献