Abstract
Abstract
Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from “petal” state to “lotus” state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.
Funder
National Natural Science Foundation of China
National Science Foundation of SZU
Zhejiang Provincial Natural Science Funds
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference37 articles.
1. Hwang GB, Patir A, Page K, Lu Y, Allan E, Parkin IP (2017) Buoyancy increase and drag-reduction through a simple superhydrophobic coating. Nanoscale 9:7588–7594
2. Sun K, Yang H, Xue W, He A, Zhu D, Liu W, Adeyemi K, Cao Y (2018) Anti-biofouling superhydrophobic surface fabricated by picosecond laser texturing of stainless steel. Appl Surface Sci 436:263–267
3. Tenjimbayashi M, Higashi M, Yamazaki T, Takenaka I, Matsubayashi T, Moriya T, Komine M, Yoshikawa R, Manabe K, Shiratori S (2017) Droplet motion control on dynamically hydrophobic patterned surfaces as multifunctional liquid manipulators. ACS Appl Mater Interfaces 9:10371–10377
4. Kulinich SA, Farhadi S, Nose K, Du XW (2011) Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27:25–29
5. Zheng H, Chang S, Zhao Y (2017) Anti-icing & icephobic mechanism and applications of superhydrophobic/ultra slippery surface. Progress Chem 29:102–118
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献