Devising Hyperthermia Dose of NIR-Irradiated Cs0.33WO3 Nanoparticles for HepG2 Hepatic Cancer Cells

Author:

Hu Po-Sheng,Chou Hsiu-Jen,Chen Chi-An,Wu Po-Yi,Hsiao Kai-Hsien,Kuo Yu-Min

Abstract

AbstractHyperthermia is one of the most patient-friendly methods to cure cancer diseases owing to its noninvasiveness, minimally induced side-effects and toxicity, and easy implementation, prompting the development of novel therapeutic methods like photothermally triggering dose system. This research herein interrogates the variables of photothermal effects of Cs0.33WO3 nanoparticles (NPs), the duration of irradiation, optical power density and NP concentration, upon HepG2 liver cancer cell line in vitro, leading to the formulation of a near-infrared (NIR)-irradiated thermal dose. Expressly, the NPs with particulate feature sizes of 120 nm were synthesized through a series of oxidation–reduction (REDOX) reaction, thermal annealing and wet-grinding processes, and the subsequent characterization of physical, compositional, optical, photothermal properties were examined using dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS), scanning and tunneling electron microscopies (SEM and TEM), X-ray diffraction (XRD) and visible-near-infrared (VIS–NIR) photospectroscopy. Cytotoxicity of the NPs and its irradiation parameters were obtained for the HepG2 cells. By incubating the cells with the NPs, the state of endocytosis was verified, and the dependence of cellular survival rate on the variable parameters of photothermal dose was determined while maintaining the medium temperature of the cell-containing culture dish at human body temperature around 36.5 °C.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference40 articles.

1. World health organization fact sheet on cancer 2018

2. Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16(1):3–10

3. De Vita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

4. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC (2005) Cardiotoxicity of cancer therapy. J Clin Oncol 23(30):7685–7696

5. Mohan G, AyishaHamna TP, Jijo AJ, Saradha DKM, Narayanasamy A, Vellingiri B (2019) Recent advances in radiotherapy and its associated side effects in cancer—a review. J Basic Appl Zool 80(14):1–10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3