Abstract
AbstractAn accurate sensor to rapidly determine the glucose concentration is of significant importance for the human body health, as diabetes has become a very high incidence around the world. In this work, copper nanoparticles accommodated in porous carbon substrates (Cu NP@PC), synthesized by calcinating the filter papers impregnated with copper ions at high temperature, were designed as the electrode active materials for electrochemical sensing of glucose. During the formation of porous carbon, the copper nanoparticles spontaneously accommodated into the formed voids and constituted the half-covered composites. For the electrochemical glucose oxidation, the prepared Cu NP@PC composites exhibit much superior catalytic activity with the current density of 0.31 mA/cm2 at the potential of 0.55 V in the presence of 0.2 mM glucose. Based on the high electrochemical oxidation activity, the present Cu NP@PC composites also exhibit a superior glucose sensing performance. The sensitivity is determined to be 84.5 μA /(mmol.L) with a linear range of 0.01 ~ 1.1 mM and a low detection limit (LOD) of 2.1 μmol/L. Compared to that of non-porous carbon supported copper nanoparticles (Cu NP/C), this can be reasonable by the improved mass transfer and strengthened synergistic effect between copper nanoparticles and porous carbon substrates.
Funder
the National Key Research and Development Program of China
National Natural Science Foundation of China
Central South University
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献