Photoelectrical Properties Investigated on Individual Si Nanowires and Their Size Dependence

Author:

Hu Xiaofeng,Li Shujie,Jiang Zuimin,Yang XinjuORCID

Abstract

AbstractPeriodically ordered arrays of vertically aligned Si nanowires (Si NWs) are successfully fabricated with controllable diameters and lengths. Their photoconductive properties are investigated by photoconductive atomic force microscopy (PCAFM) on individual nanowires. The results show that the photocurrent of Si NWs increases significantly with the laser intensity, indicating that Si NWs have good photoconductance and photoresponse capability. This photoenhanced conductance can be attributed to the photoinduced Schottky barrier change, confirmed by I–V curve analyses. On the other hand, electrostatic force microscopy (EFM) results indicate that a large number of photogenerated charges are trapped in Si NWs under laser irradiation, leading to the lowering of barrier height. Moreover, the size dependence of photoconductive properties is studied on Si NWs with different diameters and lengths. It is found that the increasing magnitude of photocurrent with laser intensity is greatly relevant to the nanowires’ diameter and length. Si NWs with smaller diameters and shorter lengths display better photoconductive properties, which agrees well with the size-dependent barrier height variation induced by photogenerated charges. With optimized diameter and length, great photoelectrical properties are achieved on Si NWs. Overall, in this study the photoelectrical properties of individual Si NWs are systematically investigated by PCAFM and EFM, providing important information for the optimization of nanostructures for practical applications.

Funder

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3