Abstract
AbstractA simple design of triple-band perfect light absorber (PLA) based on hybrid metasurface in visible region has been presented in this work, which turns out to be applicable for refractive index (RI) sensing. Distinct from previous designs, the proposed hybrid metasurface for visible PLA is only consisted of periodic silicon cross nanostructure arrays and gold substrate. The periodic silicon cross arrays deposited on the gold substrate contribute to excite the guided modes under the normal incident light illumination. According to the simulation results, it can be found that three perfect absorption peaks of 98.1%, 98.7%, and 99.6% which are located at 402.5 THz, 429.5 THz, and 471.5 THz, respectively, have been clearly observed in PLA. This triple-band perfect absorption effect could be attributed to the intrinsic loss of silicon material originated from the guided mode excitations caused by the standing waves of different orders. It has been confirmed that the perfect absorption properties of the PLA can be easily regulated by changing the geometric parameters of the unit-cell nanostructure. Furthermore, the designed PLA served as a RI sensor can achieve sensitivity of about 25.3, 41.3, and 31.9 THz /refractive index unit (RIU). It can be believed that the proposed design of PLA for RI sensing would provide great potential applications in sensing, detecting, the enhanced visible spectroscopy, etc.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献