Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment

Author:

Ikram Muhammad,Raza Ali,Imran Muhammad,Ul-Hamid Anwar,Shahbaz Atif,Ali Salamat

Abstract

AbstractGraphene oxide (GO) was obtained through modified hummers method, and reduced graphene oxide (rGO) was acquired by employing heat treatment. Various concentrations (2.5, 5, 7.5, and 10 wt. %) of silver (Ag) were incorporated in GO nanosheets by adopting hydrothermal approach. Synthesized Ag decorated rGO photocatalyst Ag/rGO was characterized using X-ray diffraction (XRD) to determine phase purity and crystal structure. XRD patterns showed the formation of GO to Ag/rGO. Molecular vibration and functional groups were determined through Fourier Transform Infrared spectroscopy (FTIR). Optical properties and a decrease in bandgap with insertion of Ag were confirmed with UV-Visible (Uv-Vis) spectrophotometer and photoluminescence (PL). Electronic properties and disorders in carbon structures were investigated through Raman spectroscopy that revealed the existence of characteristic bands (D and G). Surface morphology of prepared samples was examined with field emission scanning electron microscope (FESEM). Homogeneous distribution, size, and spherical shape of Ag NPs over rGO sheets were further confirmed with the help of high-resolution transmission electron microscope (HR-TEM). Dye degradation of doped and undoped samples was examined through Uv-Vis spectra. Experimental results indicated that photocatalytic activity of Ag@rGO enhanced with increased doping ratio owing to diminished electron-hole pair recombination. Therefore, it is suggested that Ag@rGO can be used as a beneficial and superior photocatalyst to clean environment and wastewater.

Funder

Higher Education Commission, Pakistan

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3