Boron Carbon Oxynitride as a Novel Metal-Free Photocatalyst

Author:

Chien Liang Cheng,Chiang Chen Wei,Lao Chou Chio,Lin Yung-I,Lin Hao-Wu,Keng Pei YuinORCID

Abstract

AbstractBoron-based nanomaterials are emerging as non-toxic, earth-abundant (photo)electrocatalyst materials in solar energy conversion for the production of solar hydrogen fuel and environmental remediation. Boron carbon oxynitride (BCNO) is a quaternary semiconductor with electronic, optical, and physicochemical properties that can be tuned by varying the composition of boron, nitrogen, carbon, and oxygen. However, the relationship between BCNO's structure and -photocatalytic activity relationship has yet to be explored. We performed an in-depth spectroscopic analysis to elucidate the effect of using two different nitrogen precursors and the effect of annealing temperatures in the preparation of BCNO. BCNO nanodisks (D = 6.7 ± 1.1 nm) with turbostratic boron nitride diffraction patterns were prepared using guanidine hydrochloride as the nitrogen source precursor upon thermal annealing at 800°C. The X-ray photoelectron spectroscopy (XPS) surface elemental analysis of the BCNO nanodisks revealed the B, C, N, and O compositions to be 40.6%, 7.95%, 37.7%, and 13.8%, respectively. According to the solid-state 11B NMR analyses, the guanidine hydrochloride-derived BCNO nanodisks showed the formation of various tricoordinate BNx(OH)3−x species, which also served as one of the photocatalytic active sites. The XRD and in-depth spectroscopic analyses corroborated the preparation of BCNO-doped hexagonal boron nitride nanodisks. In contrast, the BCNO annealed at 600 °C using melamine as the nitrogen precursor consisted of layered nanosheets composed of B, C, N, and O atoms covalently bonded in a honeycomb lattice as evidence by the XRD, XPS, and solid-state NMR analysis (11B and 13C) analyses. The XPS surface elemental composition of the melamine-derived BCNO layered structures consisted of a high carbon composition (75.1%) with a relatively low boron (5.24%) and nitrogen (7.27%) composition, which indicated the formation of BCNO-doped graphene oxides layered sheet structures. This series of melamine-derived BCNO-doped graphene oxide layered structures were found to exhibit the highest photocatalytic activity, exceeding the photocatalytic activity of graphitic carbon nitride. In this layered structure, the formation of the tetracoordinate BNx(OH)3−x(CO) species and the rich graphitic domains were proposed to play an important role in the photocatalytic activity of the BCNO-doped graphene oxides layered structures. The optical band gap energies were measured to be 5.7 eV and 4.2 eV for BCNO-doped hexagonal boron nitride nanodisks and BCNO-doped graphene oxides layered structures, respectively. Finally, BCNO exhibited an ultralong photoluminescence with an average decay lifetime of 1.58, 2.10, 5.18, and 8.14 µs for BGH01, BGH03, BMH01, BMH03, respectively. This study provides a novel metal-free photocatalytic system and provides the first structural analysis regarding the origin of BCNO-based photocatalyst. Graphical Abstract

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3