Abstract
AbstractTo further improve the performance of all-inkjet-printing ZnO UV photodetector and maintain the advantages of inkjet printing technology, the inkjet printing Ag nanoparticles (NPs) were deposited on the inkjet printing ZnO UV photodetector for the first time. The inkjet printing Ag NPs can passivate the surface defects of ZnO and work as surface plasmons from the characterization of photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and finite difference time domain method (FDTD) simulation. The normalized detectivity (D*) of the Ag NP-modified detector reaches to 1.45 × 1010 Jones at 0.715 mW incident light power, which is higher than that of 5.72 × 109 Jones of the bare ZnO photodetector. The power-law relationship between the photocurrent and the incident light power of the Ag NP-modified ZnO detector is Ipc ∝ P2.34, which means the photocurrent is highly sensitive to the change of incident light power.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Guangdong Province
Shenzhen University-National Taipei University of Technology Joint Research Program
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献