Author:
Cheng Feng-Min,Zhang Jin-Chuan,Gu Zeng-hui,Wang Dong-Bo,Zhuo Ning,Zhai Shen-Qiang,Wang Li-Jun,Liu Jun-Qi,Liu Shu-Man,Liu Feng-Qi,Wang Zhan-Guo
Abstract
Abstract
In this paper, an anomalous spectral data of distributed Bragg reflector (DBR) quantum cascade lasers (QCLs) emitting around 7.6 μm is presented. The two-section DBR lasers, consisting of a gain section and an unpumped Bragg reflector, display an output power above 0.6 W in continuous wave (CW) mode at room temperature. The anomalous spectral data is defined as a longitudinal mode which moves toward shorter wavelengths with increasing temperature or injection current, which is unexpected. Although the longer wavelength modes are expected to start lasing when raising device temperature or injection current, occasional mode hops to a shorter wavelength are seen. These anomalous mode transitions are explained by means of modal analysis. The thermal-induced change of the refractive index implied by an increase in the temperature or injection current yields nearly periodic transitions between cavity modes.
Funder
National Key Research and Development Program
the National Natural Science Foundation of China
National Natural Science Foundation of China
the Key projects of Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献