Author:
Shu Mengjun,Gao Feng,Zeng Min,Yu Chulang,Wang Xue,Huang Renhua,Yang Jianhua,Su Yanjie,Hu Nantao,Zhou Zhihua,Liu Ke,Yang Zhi,Tan Hongtao,Xu Lin
Abstract
AbstractTo achieve better antitumour efficacy, it is urgent to improve anticancer drug delivery efficiency in targeting cancer cells. In this work, chitosan-functionalized graphene oxide (ChrGO) nanosheets were fabricated via microwave-assisted reduction, which were employed to the intracellular delivery nanosystem for anticancer drug agent in breast cancer cells. Drug loading and release research indicated that adriamycin can be efficiently loaded on and released from the ChrGO nanosheets. Less drug release during delivery and better biocompatibility of ChrGO/adriamycin significantly improve its safety and therapeutic efficacy in HER2-overexpressing BT-474 cells. Furthermore, ChrGO/adriamycin in combination with trastuzumab exhibited synergistic antitumour activity in BT-474 cells, which demonstrated superior therapeutic efficacy compared with each drug alone. Cells treated with trastuzumab (5 μg/mL) or equivalent ChrGO/adriamycin (5 μg/mL) each elicited 54.5% and 59.5% cell death, respectively, while the combination treatment with trastuzumab and ChrGO/adriamycin resulted in a dramatic 88.5% cell death. The dual-targeted therapy displayed higher apoptosis, indicating superior therapeutic efficacy due to the presence of different mechanisms of action. The combined treatment of ChrGO/adriamycin and trastuzumab in BT-474 cells induced cell cycle arrest and apoptosis, which ultimately led to the death of augmented cancer cells. This work has provided a facile microwave-assisted fabrication of ChrGO as a controlled and targeted intracellular drug delivery nanosystem, which is expected to be a novel promising therapy for treating HER2-overexpressing breast cancer cells.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献