Synthesis mechanism from graphene quantum dots to carbon nanotubes by ion-sputtering assisted chemical vapor deposition

Author:

Ha Jun Mok,Lee Seoung Ho,Park Daehyeon,Yoon Young Jun,Yang In Mok,Seo Junhyeok,Hwang Yong Seok,Lee Chan Young,Suk Jae Kwon,Park Jun Kue,Yeo Sunmog

Abstract

AbstractWe present the first work of the synthesis mechanism from graphene quantum dots (GQDs) to carbon nanotubes (CNTs) by an ion-sputtering assisted chemical vapor deposition. During the annealing process, a Pt thin film deposited by the ion-sputtering was dewetted and agglomerated to form many nanometer-sized particles, leading to Pt nanoparticles (PtNPs) that can act as catalysts for creating carbon allotropes. The shape of the allotropes can be effectively tailored from GQDs to CNTs by controlling three key parameters such as the dose of catalytic ions (D), amounts of carbon source (S), and thermal energy (T). In our work, it was clearly proved that the growth control from GQDs to CNTs has a comparably proportional relationship with D and S, but has a reverse proportional relationship with T. Furthermore, high-purity GQDs without any other by-products and the CNTs with the cap of PtNPs were generated. Their shapes were appropriately controlled, respectively, based on the established synthesis mechanism. Graphical abstract

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3