Rheological Behavior of SAE50 Oil–SnO2–CeO2 Hybrid Nanofluid: Experimental Investigation and Modeling Utilizing Response Surface Method and Machine Learning Techniques

Author:

Sepehrnia Mojtaba,Lotfalipour Mohammad,Malekiyan Mahdi,Karimi Mahsa,Farahani Somayeh Davoodabadi

Abstract

AbstractIn this study, for the first time, the effects of temperature and nanopowder volume fraction (NPSVF) on the viscosity and the rheological behavior of SAE50–SnO2–CeO2 hybrid nanofluid have been studied experimentally. Nanofluids in NPSVFs of 0.25% to 1.5% have been made by a two-step method. Experiments have been performed at temperatures of 25 to 67 °C and shear rates (SRs) of 1333 to 2932.6 s−1. The results revealed that for base fluid and nanofluid, shear stress increases with increasing SR and decreasing temperature. By increasing the temperature to about 42 °C at a NPSVF of 1.5%, about 89.36% reduction in viscosity is observed. The viscosity increases with increasing NPSVF about 37.18% at 25 °C. In all states, a non-Newtonian pseudo-plastic behavior has been observed for the base fluid and nanofluid. The highest relative viscosity occurs for NPSVF = 1.5%, temperature = 25 °C and SR = 2932.6 s−1, which increases the viscosity by 37.18% compared to the base fluid. The sensitivity analysis indicated that the highest sensitivity is related to temperature and the lowest sensitivity is related to SR. Response surface method, curve fitting method, adaptive neuro-fuzzy inference system and Gaussian process regression (GPR) have been used to predict the dynamic viscosity. Based on the results, all four models can predict the dynamic viscosity. However, the GPR model has better performance than the other models.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3