Restored microRNA-326-5p Inhibits Neuronal Apoptosis and Attenuates Mitochondrial Damage via Suppressing STAT3 in Cerebral Ischemia/Reperfusion Injury

Author:

Huang Yumin,Wang Yingge,Duan Zuowei,Liang Jingyan,Xu Yijun,Zhang Shuai,Tang Tieyu

Abstract

AbstractStudies have greatly explored the role of microRNAs (miRNAs) in cerebral ischemia/reperfusion injury (CI/RI). But the specific mechanism of miR-326-5p in CI/RI is still elusive. Hence, this study was to unmask the mechanism of miR-326-5p/signal transducer and activator of transcription-3 (STAT3) axis in CI/RI. Two models (oxygen and glucose deprivation [OGD] in primary rat cortical neurons and middle cerebral artery occlusion [MCAO] in Sprague–Dawley rats) were established to mimic CI/RI in vitro and in vivo, respectively. Loss- and gain-of function assays were performed with OGD-treated neurons and with MCAO rats. Afterward, viability, apoptosis, oxidative stress and mitochondrial membrane potential in OGD-treated neurons were tested, as well as pathological changes, apoptosis and mitochondrial membrane potential in brain tissues of MCAO rats. Mitofusin-2 (Mfn2), miR-326-5p and STAT3 expression in OGD-treated neurons and in brain tissues of MCAO rats were detected. Mfn2 and miR-326-5p were reduced, and STAT3 was elevated in OGD-treated neurons and brain tissues of MCAO rats. miR-326-5p targeted and negatively regulated STAT3 expression. Restoring miR-326-5p or reducing STAT3 reinforced viability, inhibited apoptosis and oxidative stress, increased mitochondrial membrane potential and increased Mfn2 expression in OGD-treated neurons. Up-regulating miR-326-5p or down-regulating STAT3 relieved pathological changes, inhibited apoptosis and elevated mitochondrial membrane potential and Mfn2 expression in brain tissues of rats with MCAO. This study elucidates that up-regulated miR-326-5p or down-regulated STAT3 protects against CI/RI by elevating Mfn2 expression.

Funder

The National Key Research and Development Program of China

The National Nature Science Foudation of China

The Foudation of Jiangsu Provincial Commission of Health and Family Planning

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3