Author:
Kumagai Fuga,Gotoh Kazuhiro,Miyamoto Satoru,Kato Shinya,Kutsukake Kentaro,Usami Noritaka,Kurokawa Yasuyoshi
Abstract
AbstractSilicon quantum dot multilayer (Si-QDML) is a promising material for a light absorber of all silicon tandem solar cells due to tunable bandgap energy in a wide range depending on the silicon quantum dot (Si-QD) size, which is possible to overcome the Shockley–Queisser limit. Since solar cell performance is degenerated by carrier recombination through dangling bonds (DBs) in Si-QDML, hydrogen termination of DBs is crucial. Hydrogen plasma treatment (HPT) is one of the methods to introduce hydrogen into Si-QDML. However, HPT has a large number of process parameters. In this study, we employed Bayesian optimization (BO) for the efficient survey of HPT process parameters. Photosensitivity (PS) was adopted as the indicator to be maximized in BO. PS (σp/σd) was calculated as the ratio of photoconductivity (σp) and dark conductivity (σd) of Si-QDML, which allowed the evaluation of important electrical characteristics in solar cells easily without fabricating process-intensive devices. 40-period layers for Si-QDML were prepared by plasma-enhanced chemical vapor deposition method and post-annealing onto quartz substrates. Ten samples were prepared by HPT under random conditions as initial data for BO. By repeating calculations and experiments, the PS was successfully improved from 22.7 to 347.2 with a small number of experiments. In addition, Si-QD solar cells were fabricated with optimized HPT process parameters; open-circuit voltage (VOC) and fill factor (FF) values of 689 mV and 0.67, respectively, were achieved. These values are the highest for this type of device, which were achieved through an unprecedented attempt to combine HPT and BO. These results prove that BO is effective in accelerating the optimization of practical process parameters in a multidimensional parameter space, even for novel indicators such as PS.
Funder
Japan Society for the Promotion of Science
Nagoya University Research Fund
Japan Science and Technology Agency
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献