A new line tunneling SiGe/Si iTFET with control gate for leakage suppression and subthreshold swing improvement

Author:

Lin Jyi-Tsong,Weng Shao-Cheng

Abstract

AbstractThis article presents a new line tunneling dominating metal–semiconductor contact-induced SiGe–Si tunnel field-effect transistor with control gate (CG-Line SiGe/Si iTFET). With a structure where two symmetrical control gates at the drain region are given a sufficient negative bias, the overlap of the energy bands at the drain in the OFF-state is effectively suppressed, thus reducing the tunneling probability and significantly decreasing leakage current. Additionally, the large overlap area between the source and gate improves the gate’s ability to control the tunneling interface effectively, improving the ON-state current and subthreshold swing characteristics. By using the Schottky contact characteristics of a metal–semiconductor contact with different work functions to form a PN junction, the need to control doping profiles or random doping fluctuations is avoided. Furthermore, as ion implantation is not required, issues related to subsequent annealing are also eliminated, greatly reducing thermal budget. Due to the different material bandgap characteristics selected for the source and drain regions, the probability of overlap of the energy bands in the source region in the ON-state is increased and that in the drain region in the OFF-state is reduced. Based on the feasibility of the actual fabrication process and through rigorous 2D simulation studies, improvements in subthreshold swing and high on/off current ratio can be achieved simultaneously based on the proposed device structure. Additionally, the presence of the control gate structure effectively suppresses leakage current, further enhancing its potential for low-power-consumption applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3