Digital image processing realized by memristor-based technologies

Author:

Wang Lei,Meng Qingyue,Wang Huihui,Jiang Jiyuan,Wan Xiang,Liu Xiaoyan,Lian Xiaojuan,Cai Zhikuang

Abstract

AbstractToday performance and operational efficiency of computer systems on digital image processing are exacerbated owing to the increased complexity of image processing. It is also difficult for image processors based on complementary metal–oxide–semiconductor (CMOS) transistors to continuously increase the integration density, causing by their underlying physical restriction and economic costs. However, such obstacles can be eliminated by non-volatile resistive memory technologies (known as memristors), arising from their compacted area, speed, power consumption high efficiency, and in-memory computing capability. This review begins with presenting the image processing methods based on pure algorithm and conventional CMOS-based digital image processing strategies. Subsequently, current issues faced by digital image processing and the strategies adopted for overcoming these issues, are discussed. The state-of-the-art memristor technologies and their challenges in digital image processing applications are also introduced, such as memristor-based image compression, memristor-based edge and line detections, and voice and image recognition using memristors. This review finally envisages the prospects for successful implementation of memristor devices in digital image processing.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3