The potential of carbon-based nanomaterials in hepatitis C virus treatment: a review of carbon nanotubes, dendrimers and fullerenes

Author:

Nader Karim,Shetta Amro,Saber Sameh,Mamdouh Wael

Abstract

AbstractHCV, hepatitis C virus, is a virus that causes damage to the liver. Both chronic infection or lack of treatment increase morbidity except if it is an acute infection, as the body clears the virus without any intervention. Also, the virus has many genotypes, and until now, there has yet to be a single treatment capable of affecting and treating all these genotypes at once. This review will discuss the main and most used old treatments, IFN-a, PEG IFN-a, Ribavirin, Celgosvir, and sofosbuvir alone and with the combination of other drugs and their drawbacks. They should be given in combination to improve the effect on the virus compared with being administrated independently, as in the case of sofosbuvir. For these reasons, the need for new treatments and diagnostic tools arises, and the rule of nanotechnology comes here. The role of carbon nanotubes, dendrimers, and fullerenes will be discussed. CNTs, carbon nanotubes, are one-dimensional structures composed of a cylindrical sheet of graphite and are mainly used for diagnostic purposes against HCV. Dendrimers, three-dimensional highly branched structures, are macromolecules that provide better drug delivery and treatment options due to their unique structure that can be modified, producing versatile types; each has unique properties. Fullerenes which are cage like structures derived and closely related to CNTs, and composed of carbon atoms that can be substituted by other atoms which in return open unlimited usage for these carbon based materials. Fullerenes rule is unique since it has two mechanisms that prevent the virus from binding and acting on the virus-replicating enzyme. However, their charge needs to be determined; otherwise, it will lead to cytotoxicity. Lastly, no review has been done on the role of nanotechnology against HCV yet.

Funder

STDF Agreement

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3