Abstract
AbstractDue to the wide use of iron in all kinds of areas, the design and construction of direct, fast, and highly sensitive sensor for Fe3+ are highly desirable and important. In the present work, a kind of fluorescent MXene quantum dots (MQDs) was synthesized via an intermittent ultrasound process using N,N-dimethyl formamide as solvent. The prepared MQDs were characterized via a combination of UV–Vis absorption, fluorescence spectra, X-ray photoelectron energy spectra, and Fourier-transform infrared spectroscopy. Based on the electrostatic-induced aggregation quenching mechanism, the fluorescent MQDs probes exhibited excellent sensing performance for the detection of Fe3+, with a sensitivity of 0.6377 mM−1 and the detection limit of 1.4 μM, superior to those reported in studies. The present MQDs-based probes demonstrate the potential promising applications as the sensing device of Fe3+.
Funder
national key research and development program of china
national natural science foundation of china
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献