Author:
Sheikh Mohd Abdullah,Chandok R. S.,Abida Khan
Abstract
AbstractSelf-heteroatom-doped N-carbon dots (N-CDs) with a 2.35 eV energy gap and a 65.5% fluorescence quantum yield were created using a one-step, efficient, inexpensive, and environmentally friendly microwave irradiation method. FE-SEM, EDX, FT-IR, XRD, UV–VIS spectroscopy, FL spectroscopy, and CV electrochemical analysis were used to characterise the produced heteroatom-doped N-CDs. The graphitic carbon dot surface is doped with heteroatom functional groups such (S, P, K, Mg, Zn) = 1%, in addition to the additional passivating agent (N), according to the EDX surface morphology and the spontaneous heteroatom doping was caused by the heterogeneous chemical composition of pumpkin seeds. These spontaneous heteroatom-doped N-CDs possess quasispherical amorphous graphitic structure with an average size of less than 10 nm and the interplaner distance of 0.334 nm. Calculations utilising cyclic voltammetry showed that the heteroatom-doped N-CDs placed on nickel electrodes had a high specific capacitance value of 1044 F/g at a scan rate of 10 mV/s in 3 M of KOH electrolyte solution. Furthermore, it demonstrated a high energy and power density of 28.50 Wh/kg and 3350 W/kg, respectively. The higher value of specific capacitance and energy density were attributed to the fact that the Ni/CDs electrode material possesses both EDLC and PC properties due to the sufficient surface area and the multiple active sites of the prepared N-CDs. Furthermore, the heteroatom N-CDs revealed the antifungal action and bioimaging of the "Cladosporium cladosporioides" mould, which is mostly accountable for economic losses in agricultural products. The functional groups of nitrogen, sulphur, phosphorus, and zinc on the surface of the CDs have strong antibacterial and antifungal properties as well as fluorescence enhanced bioimaging.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献