Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite

Author:

Cui PengORCID,Xue Yuan

Abstract

AbstractThe sensitive electronic environment at the quantum dot (QD)–dye interface becomes a roadblock to enhancing the energy conversion efficiency of dye-functionalized quantum dots (QDs). Energy alignments and electronic couplings are the critical factors governing the directions and rates of different charge transfer pathways at the interface, which are tunable by changing the specific linkage groups that connect a dye to the QD surface. The variation of specific anchors changes the binding configurations of a dye on the QD surface. In addition, the presence of a co-adsorbent changes the dipole–dipole and electronic interactions between a QD and a dye, resulting in different electronic environments at the interface. In the present work, we performed density functional theory (DFT)-based calculations to study the different binding configurations of N719 dye on the surface of a Cd33Se33 QD with a co-adsorbent D131 dye. The results revealed that the electronic couplings for electron transfer were greater than for hole transfer when the structure involved isocyanate groups as anchors. Such strong electronic couplings significantly stabilize the occupied states of the dye, pushing them deep inside the valence band of the QD and making hole transfer in these structures thermodynamically unfavourable. When carboxylates were involved as anchors, the electronic couplings for hole transfer were comparable to electron transfer, implying efficient charge separation at the QD–dye interface and reduced electron–hole recombination within the QD. We also found that the electronic couplings for electron transfer were larger than those for back electron transfer, suggesting efficient charge separation in photoexcited QDs. Overall, the current computational study reveals some fundamental aspects of the relationship between the interfacial charge transfer for QD@dye composites and their morphologies which benefit the design of QD-based nanomaterials for photovoltaic applications.

Funder

fundamental research funds for the central universities

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3