Significant photocatalytic decomposition of malachite green dye in aqueous solutions utilizing facilely synthesized barium titanate nanoparticles

Author:

Al-Wasidi Asma S.,Abdelrahman Ehab A.

Abstract

AbstractThe release of malachite green dye into water sources has detrimental effects on the liver, kidneys, and respiratory system. Additionally, this dye can impede photosynthesis and disrupt the growth and development of plants. As a result, in this study, barium titanate nanoparticles (BaTiO3) were facilely synthesized using the Pechini sol–gel method at 600 °C (abbreviated as EA600) and 800 °C (abbreviated as EA800) for the efficient removal of malachite green dye from aqueous media. The Pechini sol–gel method plays a crucial role in the production of barium titanate nanoparticles due to its simplicity and ability to precisely control the crystallite size. The synthesized barium titanate nanoparticles were characterized by several instruments, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy, and a diffuse reflectance spectrophotometer. The XRD analysis confirmed that the mean crystallite size of the EA600 and EA800 samples is 14.83 and 22.27 nm, respectively. Furthermore, the HR-TEM images confirmed that the EA600 and EA800 samples exhibit irregular and polyhedral structures, with mean diameters of 45.19 and 72.83 nm, respectively. Additionally, the synthesized barium titanate nanoparticles were utilized as catalysts for the effective photocatalytic decomposition of malachite green dye in aqueous media. About 99.27 and 93.94% of 100 mL of 25 mg/L malachite green dye solution were decomposed using 0.05 g of the EA600 and EA800 nanoparticles within 80 min, respectively. The effectiveness of synthesized BaTiO3 nanoparticles as catalysts stems from their unique characteristics, including small crystallite sizes, a low rate of hole/electron recombination owing to ferroelectric properties, high chemical stability, and the ability to be regenerated and reused multiple times without any loss in efficiency.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3