Anion-Regulated Synthesis of ZnO 1D Necklace-Like Nanostructures with High Photocatalytic Activity

Author:

Qin Xiaoyun,Shi Dongdong,Guo Bowen,Fu Cuicui,Zhang Jin,Xie Qingqing,Shi Xiangdong,Chen Fenghua,Qin Xiaomei,Yu Wei,Feng Xiangli,Liu Yan,Luo DanORCID

Abstract

Abstract One-dimensional (1D) nanomaterials with specific architectures have received increasing attention for both scientific and technological interests for their applications in catalysis, sensing, and energy conversion, etc. However, the development of an operable and simple method for the fabrication of 1D nanostructures remains a challenge. In this work, we developed an “anion-regulated morphology” strategy, in which anions could regulate the dimensionally-restricted anisotropic growth of ZnO nanomaterials by adjusting the surface energy of different growth facets. ZnO 1D necklace-like nanostructures (NNS) could be prepared through a hydrothermal treatment of zinc acetate and urea mixture together with a subsequent calcination procedure at 400 °C. While replacing the acetate ions to nitrate, sulfate, and chlorion ions produced ZnO nanoflowers, nanosheets and hexagonal nanoplates, respectively. Density functional theory calculations were carried out to explain the mechanism behind the anions-regulating anisotropic crystal growth. The specified ZnO 1D NNS offered improved electron transport while the grain surface could supply enlarged specific surface area, thus providing advanced photocatalytic ability in the following photodegradation of methyl orange (MO). Among the four photocatalysts with different morphologies, ZnO 1D NNS, possessing the highest catalytic activity, degraded 57.29% MO in the photocatalytic reaction, which was 2 times, 10 times and 17 times higher than nanoflowers, nanosheets and hexagonal nanoplates, respectively. Our work provides new ideas for the construction and application of ZnO 1D nanomaterials.

Funder

National Natural Science Foundation of China

Doctoral Scientific Research Foundation of Zhengzhou University of Light Industry

Strategic Cooperation Technology Projects of CNPC and CUPB

Natural Science Foundation of Beijing Municipality

Science Foundation of China University of Petroleum

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3