Author:
Ren Caifeng,Ke Qiyun,Fan Xiaoxia,Ning Keke,Wu Yuan,Liang Jiangong
Abstract
AbstractTraditional Chinese medicines (TCMs)/nanopreparations as viral antagonists exhibited a structure–function correlation, i.e., the differences in surface area/volume ratio caused by the variations in shape and size could result in different biochemical properties and biological activities, suggesting an important impact of morphology and structure on the antiviral activity of TCM-based nanoparticles. However, few studies paid attention to this aspect. Here, the effect of TCM-based nanoparticles with different morphologies on their antiviral activity was explored by synthesizing rhein/silver nanocomposites (Rhe@AgNPs) with spherical (S-Rhe/Ag) and linear (L-Rhe/Ag) morphologies, using rhein (an active TCM ingredient) as a reducing agent and taking its self-assembly advantage. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model virus, the inhibitory effects of S-Rhe/Ag and L-Rhe/Ag on PRRSV were compared. Results showed that the product morphology could be regulated by varying pH values, and both S- and L-Rhe/Ag exhibited good dispersion and stability, but with a smaller size for L-Rhe/Ag. Antiviral experiments revealed that Rhe@AgNPs could effectively inhibit PRRSV infection, but the antiviral effect was morphology-dependent. Compared with L-Rhe/Ag, S-Rhe/Ag could more effectively inactivate PRRSV in vitro and antagonize its adsorption, invasion, replication, and release stages. Mechanistic studies indicated that Rhe@AgNPs could reduce the production of reactive oxygen species (ROS) induced by PRRSV infection, and S-Rhe/Ag also had stronger ROS inhibitory effect. This work confirmed the inhibitory effect of Rhe@AgNPs with different morphologies on PRRSV and provided useful information for treating PRRSV infection with metal nanoparticles synthesized from TCM ingredients.
Graphical abstract
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC