Abstract
AbstractAn enzyme-responsive colon-specific delivery system was developed based on hollow mesoporous silica spheres (HMSS) to which biodegradable chitosan (CS) was attached via cleavable azo bonds (HMSS–N=N–CS). Doxorubicin (DOX) was encapsulated in a noncrystalline state in the hollow cavity and mesopores of HMSS with the high loading amount of 35.2%. In vitro drug release proved that HMSS–N=N–CS/DOX performed enzyme-responsive drug release. The grafted CS could increase the biocompatibility and stability and reduce the protein adsorption on HMSS. Gastrointestinal mucosa irritation and cell cytotoxicity results indicated the good biocompatibility of HMSS and HMSS–N=N–CS. Cellular uptake results indicated that the uptake of DOX was obviously increased after HMSS–N=N–CS/DOX was preincubated with a colonic enzyme mixture. HMSS–N=N–CS/DOX incubated with colon enzymes showed increased cytotoxicity, and its IC50 value was three times lower than that of HMSS–N=N–CS/DOX group without colon enzymes. The present work lays the foundation for subsequent research on mesoporous carriers for oral colon-specific drug delivery.
Funder
University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献